Characterization of Navassa National Wildlife Refuge: A preliminary report for NF-06-05 (NOAA ship *Nancy Foster*, April 18-30, 2006)

NOAA Technical Memorandum NOS NCCOS #38

This report has been reviewed by the National Ocean Service of the National Oceanic and Atmospheric Administration (NOAA) and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for their use by the United States government.

Citation for this Report

Piniak G. A., C. M. Addison, B. P. Degan, A. V. Uhrin and T. S. Viehman. 2006. Characterization of Navassa National Wildlife Refuge: A preliminary report for NF-06-05 (NOAA ship *Nancy Foster*, April 18-30, 2006). NOAA Technical Memorandum NOS NCCOS #38. 48 p. Characterization of Navassa National Wildlife Refuge: A preliminary report for NF-06-05 (NOAA ship *Nancy Foster*, April 18-30, 2006)

Gregory A. Piniak Christine M. Addison Brian P. Degan Amy V. Uhrin T. Shay Viehman

Center for Coastal Fisheries and Habitat Research NOAA/NOS/NCCOS 101 Pivers Island Road Beaufort, NC 28516

NOAA Technical Memorandum NOS NCCOS #38

September 2006

United States Department of Commerce	National Oceanic and Atmospheric Administration	National Ocean Service
Carlos M. Gutierrez	Conrad C. Lautenbacher, Jr.	John H. Dunnigan
Secretary	Administrator	Assistant Administrator

TABLE OF CONTENTS

TABLE OF CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURES vii
LIST OF APPENDICES viii
Abstract1
Introduction and Cruise Objectives2
Methods and Results4
Habitat and Fish Surveys5
Site Selection5
Survey Methodology7
Data Processing and Results9
Benthic Photoquadrats9
Habitat Analysis9
Fish Surveys11
Multibeam Mapping16
Artisanal Fishing Survey19
Conch Population Surveys24
Site Selection24
Survey Methodology25
Data Processing and Results25
Secondary Activities26
Temperature Loggers26

Specimen Collection	
Drop Camera Surveys	28
Submerged Cultural Resources	
Acknowledgments	
Literature Cited	

LIST OF TABLES

Table 1. Scientific party for NF-06-05	4
Table 2. Location and depth for habitat/fish survey dive sites. Depths are the maximum depths reached by divers.	7
Table 3. Summary table of general site classifications, total number of fish, average number of fish, and total number of fish species observed by site and within each strata	10
Table 4. Fish species observed in visual censuses at Navassa	12
Table 5. Summary, grouped by strata, of the three most common fish families and average number of fish per family. The percentage of each fish family is the proportion of that family to the total number observed by strata	.13
Table 6. Location, depth, and habitat targeted for all observed Antillean-Z traps	21
Table 7. Sample locations for conch surveys	24
Table 8. Drop camera survey sites. Hard bottom is defined as colonized by sponges, soft corals, and/or scleractinian corals	.29

LIST OF FIGURES

Figure 1. Sites for habitat and fish surveys	6
Figure 2. Percent cover by substrate type for surveys completed at Navassa in April 2006	9
Figure 3. Percent cover of habitat type by sample strata from Navassa in April 2006	10
Figure 4. Percentage of total fish, by strata and family, of the common species observed	15
Figure 5. Preliminary near-shore bathymetry to the 50 m contour, gridded at 2 m resolution. Depth gradient from ~25 m (reds) to ~50 m (green). (<i>Image courtesy Solmar Hydro</i>)	17
Figure 6. Bathymetry for entire Navassa survey area, gridded at 5 m resolution. Depth gradient from ~25 m (light blue) to over 1000 m (dark blue). (<i>Image courtesy Solmar Hydro</i>)	18
Figure 7. Haitian fishermen observed during the cruise	19
Figure 8. Antillean-Z style fish trap utilized by the Haitian fishermen, seen resting on colonized hard bottom	19
Figure 9. Location of Antillean Z-traps around Navassa. Red circles indicate actively fished traps and green circles represent locations where traps were left by fishermen	20
Figure 10. Catch taken from one of the fished traps	22
Figure 11. Diver installing the temperature logger at Northwest Point (left). Just seaward of the logger is a gorgonian growing out of a <i>Diploria</i> colony (right)	27
Figure 12. Images of the installed temperature logger viewed from side (left) and from mid water column (right). The logger location in the right image is noted with a red circle	27
Figure 13. Diver installing logger 7 at the base of the wall (left). Location of logger 6 underneath a small reef patch (right), noted with a red circle	28

LIST OF APPENDICES

Appendix 1: Special access permit for cruise, issued by U.S. Fish and Wildlife Service
Appendix 2: Sample data sheet for fish surveys
Appendix 3: Fish species of interest
Appendix 4: Settings for benthic photo surveys
Appendix 5: Dive statistics for scientists and <i>Nancy Foster</i> crew
Appendix 6: Conch survey datasheet, adapted from Glazer, 1999. Coordinates for sample locations may be found in Table 744
Appendix 7: Conch habitat codes used to classify available and utilized habitat. Adapted from Glazer, 1999
Appendix 8: Specimen collection log. Coordinates for numbered sites may be found in Table 2; the coordinates for NW Point and West Pinnacles are the same as those for the temperature loggers (see text). Site E of NW Point is located at 18° 24.836' N, 75° 01.451' W. No size was recorded for algal collections

Abstract

Navassa is a small, undeveloped island in the Windward Passage between Jamaica and Haiti. It was designated a National Wildlife Refuge under the jurisdiction of the U.S. Fish and Wildlife Service in 1999, but the remote location makes management and enforcement challenging, and the area is regularly fished by artisanal fishermen from Haiti. In April 2006, the NOAA Center for Coastal Fisheries and Habitat Research conducted a research cruise to Navassa. The cruise produced the first high-resolution multibeam bathymetry for the area, which will facilitate habitat mapping and assist in refuge management. A major emphasis of the cruise was to study the impact of Haitian fishing gear on benthic habitats and fish communities; however, in 10 days on station only one small boat was observed with five fishermen and seven traps. Fifteen monitoring stations were established to characterize fish and benthic communities along the deep (28-34 m) shelf, as these areas have been largely unstudied by previous cruises. The fish communities included numerous squirrelfishes, triggerfishes, and parrotfishes. Snappers and grouper were also present but no small individuals were observed. Similarly, conch surveys indicated the population was in low abundance and was heavily skewed towards adults. Analysis of the benthic photoquadrats is currently underway. Other cruise activities included installation of a temperature logger network, sample collection for stable isotope analyses to examine trophic structure, and drop camera surveys to ground-truth habitat maps and overhead imagery.

1

Introduction and Cruise Objectives

Navassa is a small (~5 km²) undeveloped, uninhabited island 35 mi west of Haiti that has been a National Wildlife Refuge under the jurisdiction of the U.S. Fish and Wildlife Service (USFWS) since 1999. Although a USFWS special access permit is required for entry into the refuge (Appendix 1), the remote location of the island makes enforcement challenging and Navassa's coastal waters are intensively fished by artisanal fishermen from Haiti. The coral reefs around the island may be particularly vulnerable to exploitation, as there is no traditional nursery habitat (reef flat, mangroves, seagrass beds) typically associated with coral reefs to sustain the local population. The marine resources around Navassa have not been extensively studied; the most detailed work to date is an ongoing, long-term monitoring program led by the NOAA Southeast Fisheries Science Center (SEFSC, Miami, Florida) (Miller, 2003). Preliminary results describe a relatively healthy coral reef habitat, but fish communities appear to be changing as a result of the artisanal fishing pressure.

In an effort to better characterize resource dynamics and fishing pressure in Navassa, the NOAA Center for Coastal Fisheries and Habitat Research (CCFHR, Beaufort, North Carolina) organized this research cruise aboard the NOAA ship *Nancy Foster* (cruise number NF-06-05). The goals of this cruise were to provide information complementary to that of the SEFSC effort, and to generate targeted research products to assist with the management of Navassa. In addition, the interesting combination of resources (deep reefs with little influence from terrestrial development) and management issues (remote location and fishing pressure) at Navassa provide a broad comparison for similar locations such as the Tortugas Ecological Reserve (TER), where CCFHR has an ongoing monitoring program (Fonseca et al., 2005).

2

The primary objectives of the cruise were to:

 Characterize benthic and fish communities on the deep (28-34 m) nearshore shelf of Navassa. Monitoring programs currently exist for some of Navassa's shallower resources, but the deeper portions of the reef are not well-characterized. The *Nancy Foster*'s nitrox capabilities allow scuba divers increased bottom time at depth, enabling the investigation of areas beyond those reachable by previous research cruises.

2) Conduct high-resolution multibeam surveys for Navassa. The resulting bathymetry and backscatter maps will provide context for habitat assessment work and give the refuge managers a better idea of resources within the refuge.

3) Assess the effects of artisanal fishing around Navassa. A gear impact study would document the number and type of gear deployed and the type of habitat targeted. In addition, the population status of newly exploited species (e.g. conch) would be assessed. Previous research has provided qualitative and socioeconomic information on the artisanal fishery (Jean Wiener, personal communication), but the intent here is to document gear/habitat interactions.

A number of secondary objectives were pursued as time allowed. These were:

1) Collection of biological samples for stable isotope analysis to elucidate food web structure around Navassa. The island lacks nursery habitats typical of other tropical marine systems and may support an atypical trophic structure.

2) Installation of a temperature sensor network to evaluate the potential for thermal bleaching events at Navassa and to ground-truth sea surface temperature from satellites.

3) Collection of georeferenced photography (still and video) for ground-truthing

mapping efforts (bathymetry, habitat maps, satellite imagery) by other scientists from

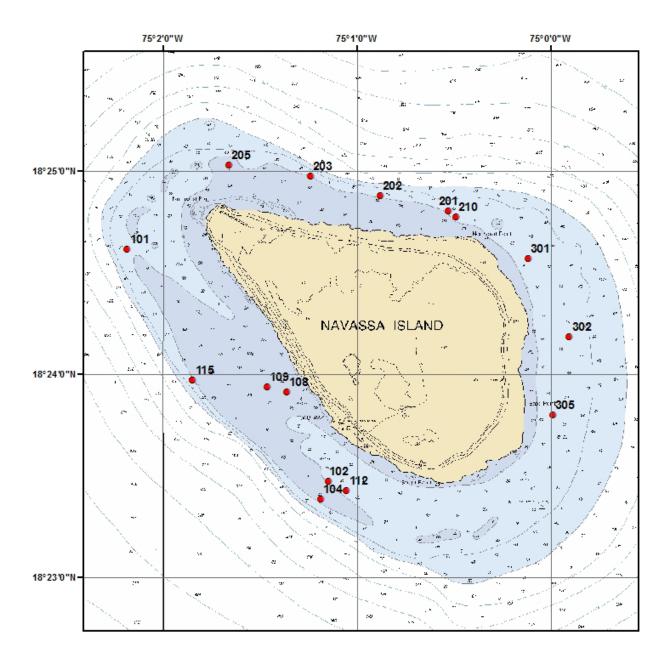
NOAA and the University of Miami.

This multidisciplinary research cruise included 14 scientists, representing two federal agencies (including four NOAA offices) and three private or nongovernmental organizations. Table 1 provides a complete list of cruise participants.

Name	Affiliation	Primary role
Addison, Christine	NOAA CCFHR	lead conch and lead fish surveys
Degan, Brian	NOAA CCFHR	lead fish surveys
Foust, Will	NOAA Public Health Service	diving medical officer
Hilmer, Dave	NOAA CSCOR	diver
Kelty, Ruth	NOAA NCCOS	diver
Marr, John	Perry Institute for Marine Science	diver
Moneysmith, Shelby	Biscayne National Park	diver
Piniak, Greg	NOAA CCFHR	chief scientist
Poray, Abigail	NOAA CCFHR	data management, camera
		supervisor
Stecher, Mike	Solmar Hydro	lead multibeam surveys
Uhrin, Amy	NOAA CCFHR	lead gear impact surveys
Vander Pluym, Jenny	NOAA CCFHR	diver
Whitfield, Paula	NOAA CCFHR	diver
Wiener, Jean	Fondation pour la Protection de la	interpreter for interviews with
	Biodiversite Marine (FoProBiM)	artisanal fishermen

Table 1. Scientific party for NF-06-05.

Methods and Results


The general daily plan for the cruise was to conduct habitat/fish survey dives at ~0800 and ~1700. Between these dives, the survey launches were used for gear impact studies, conch surveys, and miscellaneous dive operations, while the *Nancy Foster* ran multibeam survey lines. A brief methodology and summary of each research activity follows.

Habitat and Fish Surveys

The basic methodology for the habitat and fish surveys was adapted from CCFHR's ongoing monitoring program in Tortugas Ecological Reserve (Fonseca et al., 2005). The most significant difference is that the Tortugas protocol utilizes single transects for replicate sites within a level of resource protection (reserve, park, unprotected) whereas this cruise used replicate transects for individual sites selected solely by depth.

Site Selection

Site selection was based on bathymetry data collected on a previous research cruise using the QTC VIEWTM seabed classification system and a 50 kHz single-beam fathometer (Art Gleason, University of Miami, personal communication). Bathymetry data were imported into ArcMap 9.1. The Navassa area was divided into three strata (north, east, and south), and a sampling universe within each strata was defined by depth (28-34 m, or 90-110 ft). For each area, sampling sites were randomly generated using the Hawth's Tools extension in ArcGIS, with a minimum distance of 100 m between sites. The random sites were assigned a three-digit identification number to reflect strata (1 = south, 2 = north, 3 = east) and site number (01-15). Sites were selected for depth only, and no specific habitat was targeted. Each day's working sites were selected from the predetermined list of random sites based on accessibility and weather (Figure 1, Table 2). Water depth was confirmed with the ship's fathometer, and sites that were too deep were eliminated from the database. If the correct depth was confirmed and the sea state was acceptable, the site was marked with a buoy so divers could return to the site from small launches.

Figure 1. Sites for habitat and fish surveys.

Site	Strata	Latitude	Longitude	Depth	Habitat found	
			_	(ft)		
101	south	18° 24.615' N	75° 02.184' W	110	colonized hard bottom (sponge/soft coral)	
102	south	18° 23.471' N	75° 01.147' W	110	patchy reef	
104	south	18° 23.387' N	75° 01.185' W	104	patchy reef, sand with sponge/soft coral	
108	south	18° 23.912' N	75° 01.362'W	110	rubble and reef	
109	south	18° 23.938' N	75° 01.464' W	105	sand plain with patch reefs	
112	south	18° 23.427' N	75° 01.055' W	104	low-relief spur/groove	
115	south	18° 23.969' N	75° 01.848' W	109	patch reef	
201	north	18° 24.804' N	75° 00.527' W	110	colonized hard bottom	
202	north	18° 24.879' N	75° 00.878' W	110	colonized hard bottom	
203	north	18° 24.976' N	75° 01.241' W	104	colonized hard bottom	
205	north	18° 25.230' N	75° 01.661' W	105	colonized hard bottom	
210	north	18° 24.776' N	75° 00.488' W	105	low-relief spur/groove	
301	east	18° 24.675' N	75° 00.117' W	106	colonized pavement	
302	east	18° 24.184' N	74° 59.904' W	106	colonized pavement	
305	east	18° 23.798' N	74° 59.989' W	110	colonized pavement/rubble field	

Table 2. Location and depth for habitat/fish survey dive sites. Depths are the maximum depths reached by divers.

Survey Methodology

Three survey teams were deployed at each site using survey launches. All dives were completed using 32% nitrox to allow for sufficient bottom time while working at deeper depths (target depths were 90 – 110 ft). One diver conducted visual fish surveys, while a second diver was responsible for benthic photography. A third diver was typically included for safety and to assist with miscellaneous tasks. Entry of dive teams into the water was staggered by approximately 10 minutes to minimize interference between teams. Divers descended along the buoy line and upon reaching the bottom dispersed from the anchor at pre-determined random compass bearings for a pre-determined random number of fin kicks (0-20). Each dive team carried a 30 m transect tape with a small dive weight clipped to the end. The fish diver surveyed the transect continuing the original random compass bearing, swimming at a constant speed and counting fish (see Appendix 2 for a sample fish data sheet). Large fish were counted to the limit of visibility (~25 m), while smaller resident fish were enumerated along a belt transect extending

2 m to either side of the transect tape (total belt width = 4 m) (see Appendix 3 for a complete list of targeted species). Other species of interest (lobster, conch, turtles, eels) encountered along the transect were also noted. Fish sizes were not collected due to time restrictions and the inability to calibrate diver estimates (but were noted by some fish counters).

The benthic diver followed along behind the fish diver, taking digital still photos at a fixed distance perpendicular to the bottom at each meter mark from 0 to 30m along the transect (31 images total). Camera settings and equipment setup are described in Appendix 4. In addition to high resolution habitat photos, general habitat classifications were made when swimming to the transect start. An overall site classification (continuous reef, patchy reef, pavement, rubble, sand) and an estimation of site elevation (low (<1m), medium (1-3m), high (>3m)) were identified. Additionally, divers categorized each site's substrate type in more detail using five habitat types (sand, reef, rock, rubble, and pavement) and estimated percent cover of the top three habitat types. Divers then classified benthic cover by selecting the top three benthic cover types (coral, soft coral, sponge, algae, sand) and estimated coverage of each type throughout their transect. Upon completing the transect, the fish diver rolled up the transect tape and the team returned to the buoy for ascent. The last dive team to leave the bottom would typically send the buoy anchor to the surface using a lift bag to avoid reef damage, followed by a signal float for a free ascent. A total of 45 habitat transects (15 sites x 3 transects per site) were surveyed. Statistics for these habitat dives and all other miscellaneous dive operations are provided in Appendix 5.

Data Processing and Results

Benthic Photoquadrats

Benthic habitat photos were imported into Coral Point Count with Excel extensions, developed by the National Coral Reef Institute at Nova Southeastern University Oceanographic Center (Kohler and Gill, in press). This program randomly generates a pre-selected number of points per image and allows the user to identify the organism or substrate under the sampling point; the resulting information is used to calculate the percent cover and diversity of benthic macroalgae, corals, and other invertebrates. A random subset of these transects will be included in a power analysis to determine the number of points per frame necessary for cover and diversity calculations to stabilize.

Habitat Analysis

Detailed analysis of the benthic habitat photos is currently in progress. Data presented here are from coarse habitat (abiotic) and benthic cover (biotic) classifications recorded during the fish census. Although these strata differ from previous studies, substrate type (Figure 2) and benthic cover (Figure 3) percentages recorded during this cruise are comparable to those

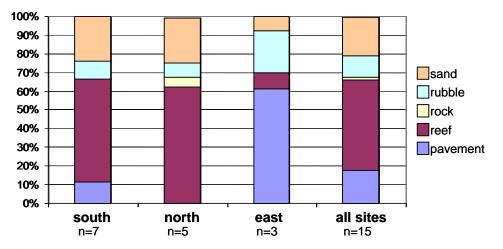


Figure 2. Percent cover by substrate type for surveys completed at Navassa in April 2006.

recorded by previous investigators at Navassa (McClellan and Miller, 2003). Substrate types for north and south sample strata are similar with reef as the dominant habitat type. The east stratum is a low relief pavement-rubble habitat, lacking large expanses of rock or reef structure (Table 3). Despite its low relief, the total numbers of fish recorded on the east side were comparable to those of the other two sampled strata (Table 3).

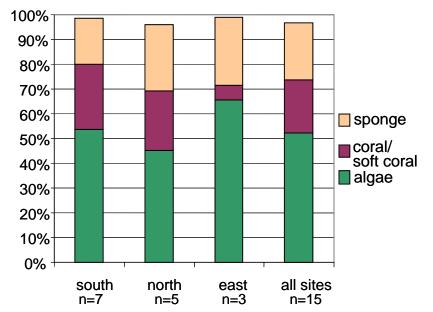


Figure 3. Percent cover of habitat type by sample strata from Navassa in April 2006.

Table 3. Summary table of general site classifications, total number of fish, average number of fish, and total number of fish species observed by site and within each strata. *Summary statistics for Site 202 do not include the solitary school of ~400 scad observed; this species was included in the total number of fish species data field.

Strata	Site	Elevation	Substrate category	Depth (ft)	Total fish	Average number of fish	Number of fish species
	301	low	pavement	106	154	51.33	19
east	302	low	pavement	106	149	49.67	22
e	305	low	rubble	110	80	26.67	16
east total				107.3	383	127.67	19
	201	medium	patchy reef	110	180	60	28
Ч	202	medium	patchy reef	110	156*	52*	23
north	203	medium	patchy reef	104	181	60.33	28
n	205	medium	patchy reef	105	237	79	24
	210	high	patchy reef	105	182	60.67	28

Strata	Site	Elevation	Substrate category	Depth (ft)	Total fish	Average number of fish	Number of fish species
north total				106.8	936*	187.2*	26.2
	101	low	pavement	110	118	39.33	14
	102	medium	patchy reef	110	161	53.67	25
h	104	medium	patchy reef	104	171	57	33
south	108	high	patchy reef	110	111	37	21
SC	109	high	patchy reef	105	113	37.67	18
	112	medium	patchy reef	104	181	60.33	22
	115	high	patchy reef	109	139	46.33	21
south total				107.4	994	142	22
grand total				107.2	2713	180.86	total: 60 mean: 22.8

Fish Surveys

Fish census data are currently being entered for data analysis; the data presented here are a preliminary analysis only. A total of 2,679 fish and invertebrates, comprised of sixty different species from 22 different families, were counted during the fish surveys. An additional four species of fish were observed off transect (lesser electric ray, black jack, wahoo, and greater soapfish). Table 4 is a preliminary inventory of fish observed from the predetermined species list (see Appendix 3). Although the methodology differs from that of previous investigators, similar fish assemblages were observed. Noteworthy observations of fish communities include:

- large aggregates of ocean triggerfish and herbivores
- within the Family Haemulidae, only French grunts were observed at five sites
- large (>30 cm) Nassau grouper observed at multiple sites on the south and east side of island
- excluding graysby and coney, few small (<30 cm) snapper or grouper were observed

Family	Scientific	Family	Species	
name	name	common name	common name	
Torpendinidae	Narcine brasiliensis	Electric rays	lesser electric ray	
Urolophidae	Urobatis jamaicensis	Round stingrays	yellow stingray	
Muraenidae	Gymnothorax moringa	Morays	spotted moray	
Holocentridae	Holocentrus adscensionis	Squirrelfishes	squirrelfish	
	Holocentrus rufus	-	longspine squirrelfish	
	Myripristis jacobus		blackbar soldierfish	
	Neoniphon marianus		longjaw squirrelfish	
	Sargocentron coruscum		reef squirrelfish	
	Sargocentron vexillarium		dusky squirrelfish	
Aulostomidae	Aulostomus maculatus	Trumpetfishes	trumpetfish	
Serranidae	Cephalopholis cruentatus	Sea basses	graysby	
	Cephalopholis fulva		coney	
	Epinephelus guttatus		red hind	
	Epinephelus striatus		Nassau grouper	
	Mycteroperca interstitialis		yellowmouth grouper	
	Mycteroperca tigris		tiger grouper	
	Rypticus saponaceus		greater soapfish	
Malacanthidae	Malacanthus plumieri	Tilefishes	sand tilefish	
Carangidae	Caranx latus	Jacks	horse-eye jack	
	Caranx lugubris		black jack	
	Caranx ruber		bar jack	
	Decapterus spp.		scad	
	Elagatis bipinnulata		rainbow runner	
	Seriola rivoliana		almaco jack	
Lutjanidae	Lutjanus apodus	Snappers	schoolmaster	
	Lutjanus jocu		dog snapper	
** ***	Ocyurus chrysurus	C (yellowtail snapper	
Haemulidae	Haemulon flavolineatum	Grunts	French grunt	
Mullidae	Mulloidichthys martinicus	Goatfishes	yellow goatfish	
V h	Pseudopeneus maculatus	C h h.	spotted goatfish	
Kyphosidae	Kyphosus sectatrix	Sea chubs	Bermuda chub	
Pomacanthidae	Holacanthus ciliaris	Angelfishes	queen angelfish	
	Holacanthus tricolor		rock beauty	
Subwaanidaa	Pomacanthus paru	Barracudas	French angelfish	
Sphyraenidae Labridae	Sphyraena barracuda Rodianus rufus	Wrasses	great barracuda Spanish hogfish	
Labridae	Bodianus rufus Clepticus parrae	vv rasses	creole wrasse	
	Halichoeres radiatus		puddingwife	
	Lachnolaimus maximus		hogfish	
Scaridae	Scarus iserti	Parrotfishes	striped parrotfish	
Scalluae	Scarus taeniopterus		princess parrotfish	
	Scarus vetula		queen parrotfish	
	Sparisoma aurofrenatum		redband parrotfish	
	Sparisoma aurojrenatum Sparisoma chrysopterum		redtail parrotfish	
	Sparisoma rubripinne		yellowtail parrotfish	
	Sparisoma viride		stoplight parrotfish	
	sparisonia viriae		stopingin partotrish	

Table 4. Fish species observed in visual censuses at Navassa.

Family name	Scientific name	Family common name	Species common name
Acanthuridae	Acanthurus bahianus Acanthurus chirurgus Acanthurus coeruleus	Surgeonfishes	ocean surgeonfish doctorfish blue tang
Scombridae	Acanthocybium solandri Thunnus atlanticus	Mackerels	wahoo blackfin tuna
Balistidae	Balistes vetula Canthidermis sufflamen Melichthys niger Xanthichthys ringens	Triggerfishes	queen triggerfish ocean triggerfish black durgon Sargassum triggerfish
Monacanthidae Ostraciidae	Aluterus schoephfii Acanthostracion polygonia Acanthostracion quadricornis Lactophrys triqueter	Filefishes Boxfishes	orangespotted filefish honeycomb cowfish scrawled cowfish smooth trunkfish

Table 5. Summary, grouped by strata, of the three most common fish families and average number of fish per family. The percentage of each fish family is the proportion of that family to the total number observed by strata. *Solitary school of 400 scad observed at site 202 in North strata was excluded from this table.

Strata	Family	% of total fish observed	Average # of fish per transect
south	Scaridae (parrotfishes)	28.87 %	13.67
	Acanthuridae (surgeonfishes)	15.69 %	7.43
	Balistidae (triggerfishes)	13.98 %	6.62
north	Scaridae*	23.82 %	14.87
	Balistidae	21.47 %	13.4
	Acanthuridae	14.21 %	8.87
east	Balistidae	25.85 %	11
	Acanthuridae	17.49 %	7.44
	Serranidae (groupers)	16.19 %	6.89

The three most common fish families encountered throughout the fish surveys were Scaridae (parrotfish), Balistidae (triggerfish), and Acanthuridae (surgeonfishes) (Table 5). With an algal dominated benthic cover (Figure 3), it is not surprising that at least one of the most abundant families in each stratum were herbivores. The most common species of the most abundant families is shown plotted by strata in Figure 4. A high percentage of serranid fishes, composed primarily of a single species, the coney, was unique to the east strata (Figure 4d). Divers observed large numbers of coneys hovering over rubble nest-like mounds, typical of the low relief and pavement-rubble type substrate of the east side (Table 4). Although squirrelfish (family: Holocentridae) were not in the three most abundant families, they were a common occurrence during fish surveys and were studied because they are a fish species targeted by Haitian fishermen (Figure 4e).

The intent for future data analysis includes: 1) comparison of these Navassa surveys to those from previous cruises (for example, McClellan and Miller, 2003); 2) comparison of species diversity within and among habitat types and trophic levels; and 3) comparison of refuge fish populations to those of other protected areas within the Caribbean and south Florida.

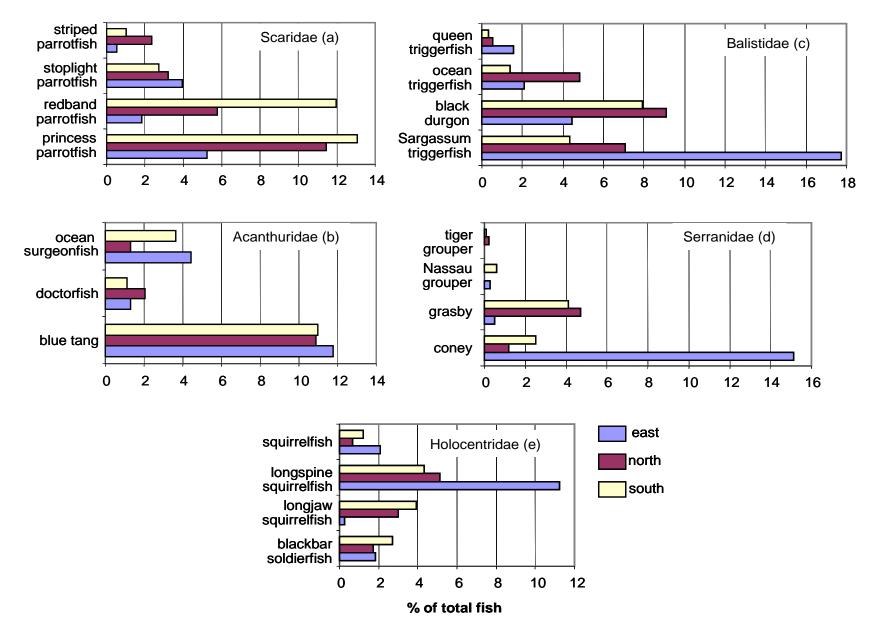
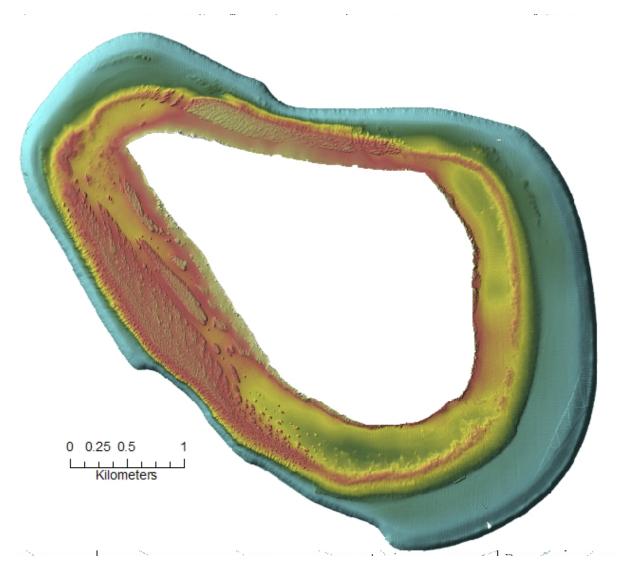
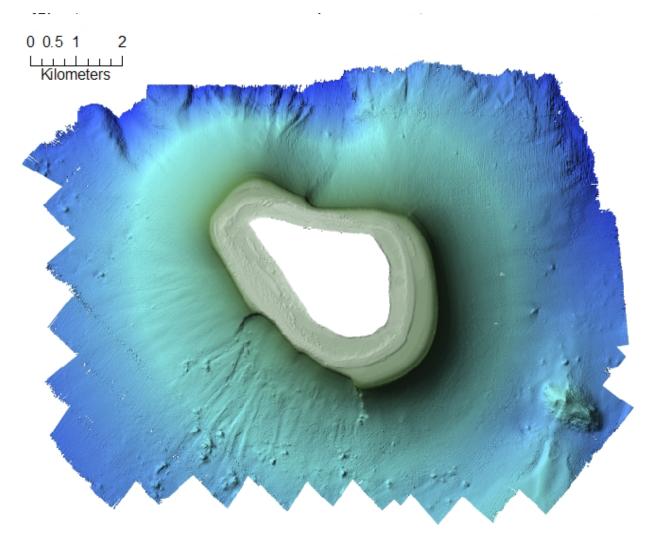



Figure 4. Percentage of total fish, by strata and family, of the common species observed.


Multibeam Mapping

The Nancy Foster has a hull-mounted Simrad EM 1002 multibeam system. A private firm, Solmar Hydro, was contracted to map the area around Navassa, with acquisition assistance from the Nancy Foster's survey technician. Upon arrival at Navassa, differential GPS coverage was found to be insufficient for the *Nancy Foster* to provide the necessary degree of spatial information for the multibeam surveys. The services of a commercial satellite company (Fugro Chance Inc.,) were therefore retained for the duration of the survey. Although previous cruises to the area had noted significant navigational hazards from artisanal fishing gear, few fishermen were present during this cruise, so the survey obtained good coverage for the relatively shallow area near the island. A total of 330 km of survey lines around Navassa produced coverage of 102 km². An additional 5% of the survey distance was done perpendicular to the original survey lines to cross-check bathymetry. Post-processing is estimated to be completed by August 2006. Preliminary bathymetry for the area is included in Figures 5 and 6. Deep-sea (~1000 m) coral habitat potentially exists to the southwest of Navassa (Steven Lutz, University of Miami, personal communication); an effort was made to map this area but power surges and electronic difficulties aboard the ship required that multibeam operations be terminated before the deep-sea survey work could be initiated.

16

Figure 5. Preliminary near-shore bathymetry to the 50 m contour, gridded at 2 m resolution. Depth gradient from ~25 m (reds) to ~50 m (green). (*Image courtesy Solmar Hydro*)

Figure 6. Bathymetry for entire Navassa survey area, gridded at 5 m resolution. Depth gradient from ~25 m (light blue) to over 1000 m (dark blue). (*Image courtesy Solmar Hydro*)

Artisanal Fishing Survey

Interviews with fishermen conducted by FoProBiM's Jean Wiener on this cruise and interviews and observations made during previous cruises by NOAA/NMFS/SEFSC (Miller et

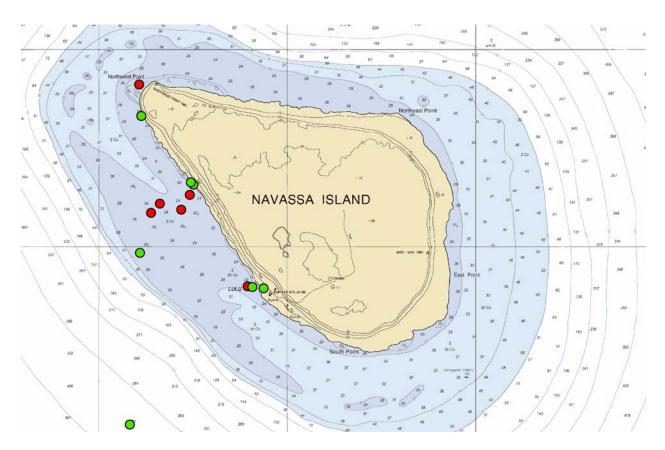

Figure 7 (above). Haitian fishermen observed during the cruise. (*Photo by Amy V. Uhrin*)

Figure 8 (below). Antillean-Z style fish trap utilized by the Haitian fishermen, seen resting on colonized hard bottom. Long axis = $\sim 2m$ (*Photo by Jean Wiener*)

al. 2003; Wiener, 2005; Wiener, 2006) provided information on various aspects of Haitian fishing practices at Navassa. Fishermen use a combination of sails, small motors (~15 hp), and oars to navigate the 35 mile crossing to Navassa in wooden plank vessels of up to 17 ft. While five men per boat is the average, vessels have been observed to hold anywhere from 3-8 fishers (Wiener, 2005). Fishing vessels spend an average of eight days at Navassa, but may spend anywhere from 2 - 21 days at the island. Up to 24 traps may be fished by a single boat on a trip. A single ~ 15 ft vessel with a crew of four men was observed (Figure 7). The men arrived from Haiti on the morning

of April 21, 2006 and departed at dawn five days later. The trip to and from Haiti was made under sail, but while at Navassa, the fishermen used oars to navigate around the island. In addition to hand lines (monofilament), a total of seven Antillean-Z-traps were fished during the 5-day trip (Figure 8). Traps were constructed of meshed/woven bamboo (3-4 cm mesh size) with wooden cross supports and corners and have opposing funnel entrances. Rocks were used as ballast and were tied at opposite corners of the traps with bamboo strips. Six of the seven traps were observed as they were actively fished. The buoys attached to the seventh trap were pulled under by currents, and the trap could not be located, even by the fishermen. Traps were set along the more protected southwest coast terrace (Figure 9). The use of triple mesh nets has also been reported at Navassa, but the fishermen on this trip indicated a preference for traps.

Figure 9. Location of Z-traps around Navassa observed during this cruise. Red circles indicate actively fished traps and green circles represent locations where traps were left by fishermen.

		Depth				
Trap #	Date	(feet)	Latitude	Longitude	Location	Habitat
Fished						
Trap 1	4/21/06	87	18° 24.264' N	75° 01.517' W	NW of Lulu Bay	colonized hard bottom
Trap 2	4/21/06	97	18° 24.173' N	75° 01.722' W	NW of Lulu Bay	bare/sandy
Trap 3	4/21/06	98	18° 24.189' N	75° 01.562' W	NW of Lulu Bay	bare/sandy
Trap 4	4/21/06	86	18° 24.220' N	75° 01.676' W	NW of Lulu Bay	colonized hard bottom
Trap 5	4/23/06	32	18° 24.825' N	75° 01.786' W	NW Point	reef
Trap 6	4/23/06	62	18° 23.800' N	75° 01.210' W	Lulu Bay	bare/sandy
Left Behind						
Trap 1	4/28/06	81	18° 23.790' N	75° 01.125' W	Lulu Bay	colonized hard bottom
Trap 2	4/28/06	82	18° 23.797' N	75° 01.185' W	Lulu Bay	sand
Trap 3	4/28/06	87	18° 23.098' N	75° 01.835' W	mid-north Lulu	colonized hard bottom
Trap 4	4/28/06	91	18° 24.317' N	75° 01.498' W	mid-north Lulu	rocky hard bottom
Trap 5	4/28/06	89	18° 24.328' N	75° 01.512' W	mid-north Lulu	colonized hard bottom
Trap 6	4/28/06	87	18° 24.665' N	75° 01.775' W	NW Point	reef
Trap 7	4/28/06	92	18° 23.970' N	75° 01.782' W	mid-north Lulu	mixed hard bottom

Table 6. Location, depth, and habitat targeted for all observed Antillean Z-traps.

At each trap, a SeaViewer® Sea-DropTM color camera (650 series) was deployed to record the type of habitat that the trap was resting on (Table 6). In addition, a coordinate was collected using DGPS to mark the location of the trap buoy, and a Speedtech SM-5 Depthmate Portable Sounder was used to determine water depth (Table 6). After the departure of the fishermen, the traps were revisited and all seven traps were located. The survey methodology described above was repeated for each trap. The traps remained *in situ* along the southwest coast (Figure 9).

Although encounters with a larger fishing fleet were anticipated, these limited observations were consistent with those reported previously for Navassa (Miller et al., 2003). Here, the Haitian fishermen deployed traps manually and preferred to set traps over bare substrate, but the size and weight of the traps made exact placement difficult. The six actively fished traps observed here targeted bare substrate and colonized hard bottom equally (Table 6). Other trap fisheries in the Caribbean likewise target low-relief colonized hardbottom and bare substrate in roughly the same proportion (St. Thomas, U. S. Virgin Islands: Quandt, 1999; Puerto Rico: Appeldoorn, 2000; Schärer, 2004). In these cases, proximity to coral reef habitat seems to be the determining factor in trap placement. Other studies have identified algal plains as primary target habitat for trap fisheries (St. John, U. S. Virgin Islands: Garrison et al., 2004; Puerto Rico: Jean-Baptiste, 1999; Valdés-Pizzini, 1997). Although no algal plain habitat was encountered during the present cruise, high percentages of algal cover (45 - 65%) were observed along all coasts of Navassa (Figure 3) suggesting that this habitat type could be frequently targeted by trap fishing.

Although trap catches were not quantified for every haul, catches that were observed suggested squirrelfish and trunkfish as the most common taxa encountered. Other taxa included sand tilefish, rock beauty, and coney. These observations are consistent with catches reported by

Figure 10. Catch taken from one of the fished traps. (*Photo by Jean Wiener*)

Miller et al. (2003). Although direct length measurements were not made, all observed fish appeared to be smaller than 20 cm, indicating that a large portion of juveniles are more than likely removed from the local population before reaching sexual maturity. The fact that these smaller animals are targeted by the fishermen supports the contention that shifts in species composition are already occurring in this fishery (Miller et al., 2003), such as are apparent in other Caribbean nations (Koslow et al., 1988; Jeffery, 2000; Rogers and Beets, 2001).

With an estimated 70 boat trips per year made to Navassa and up to 24 traps deployed during any given trip (Wiener, 2005), the possibility exists for traps to have a negative impact on the habitat that they are resting on, particularly when the traps remain in situ at the island in between fishing trips or are lost due to storms. The actively fished traps observed during the cruise were allowed to remain on the bottom for five days; no information was gathered from the fishermen regarding the amount of time between successive fishing trips. Fish traps elsewhere in the Caribbean have been observed to inflict damage on live bottom habitats (Quandt, 1999; Appeldoorn et al., 2000) although the amount of time spent on the bottom was not reported. Similarly, spiny lobster traps resting on seagrass in the Florida Keys caused significant decreases in shoot densities after six weeks in situ (Uhrin et al., 2005). In addition to habitat modification, there is the potential for modifying fish population and hence, fishery structure as these unattended traps continue to capture fish. Although these aspects of the Navassa fishery were not directly addressed here, it is an important consideration in producing cumulative impacts, especially in areas around the island where fishing effort is concentrated.

The period of time around Easter season traditionally offers the best fishing at Navassa, according to the Haitian fishermen (Wiener, 2005; 2006). Therefore, it was surprising that only one vessel was observed throughout the duration of the cruise. The fishermen explained that although it was the appropriate season, the moon was "not bright enough". Whether moon phase is important for navigational purposes or plays a role in fish distribution was not clarified but moon phase has been reported to affect catch rates of Antillean Z-traps in Jamaica (Munro et al.,

23

1971) and thus may be an important consideration when attempting to model fishing pressure at Navassa.

Given the economic importance of Navassa as a fishing ground for Haitians, the level of participation in the fishery, and the gear employed, impacts to the fishery are unavoidable. In fact, qualitative information gathered during this cruise and others before it suggests patterns of overfishing and shifts in species composition (Miller et al., 2003). In addition to direct effects of fishing pressure (i.e., resource removal), the effect of fishing gear on benthic habitats, specifically those serving as Essential Fish Habitat in this area, warrants further investigation when considering the need for fishery management strategies at Navassa.

Conch Population Surveys

Site Selection

Site selection was based on a combination of computer-based (coarse-scale) and diverselected (fine-scale) scale techniques. Conch survey efforts were divided equally across the same north, south, and east divisions of the island used for fish and habitat surveys. Using direction strata and diveable depths (less than 110 ft) as the primary site selection criteria, surface tow tracks were created across the target areas. Once on site, snorkelers were towed on a manta board at a slow speed (less than 1 kt) across the target areas to examine benthos for suitable conch habitat (i.e., absence of high relief reef structure) and evidence of resident conch (i.e., sand tracks or shells).

Site	Latitude	Longitude	Depth (ft)	Strata
East 2	18° 24.753' N	75° 00.222' W	99	east
East 1	18° 24.083' N	75° 00.114' W	92	east
North Temp	18° 24.820' N	75° 00.805' W	91	north
NW Point	18° 24.897' N	75° 01.846' W	102	north
Conch 1	18° 24.173' N	75° 01.432' W	80	south
Lulu Bay	18° 23.710' N	75° 01.190' W	70	south

 Table 7. Sample locations for conch surveys.

Survey Methodology

When a suitable habitat at appropriate depth was located, a surface marker was deployed for diver surveys. Survey methods based on a sampling design followed by the Florida Fish & Wildlife Conservation Commission (Glazer, 1999). Each site contained three 30 m transects with a belt width of 4 m. Transects originated at the drop weight and radiated outwards along a random compass bearing. When a queen or milk conch was encountered, habitat type, transect distance, age, size (if juvenile), and sexual activity (if observed) were noted. See Appendix 6 for an example of the conch survey datasheet, and Appendix 7 for conch habitat codes. A total of five sites were completed with three transects per site, at a sixth site (North Temp) only one transect was completed due to temperature logger deployment (Table 7). Presence/absence of conch was also noted by fish surveyors at 12 of the habitat sites.

Data Processing and Results

A total of 2160 m² of the inner shelf around Navassa was surveyed for conch. Only 10 live conch were observed on the 16 conch transects, with an additional 29 conch on the 45 fish/habitat transects (10 of the 29 were observed on a single transect). The conch observed (mostly queen conch) were very large and heavily encrusted with sponges and other biofouling organisms. Although mating pairs were seen on one of the habitat dives (site 109), no juvenile conch were observed during the entire trip. Recruitment is likely to be extremely limited. Haitian fishermen working around Navassa target conch both for market and for personal consumption while fishing. As the fishermen often overnight in Lulu Bay, a conch dive was dedicated to surveying the anchorage area for conch shells with a hole knocked in the shell, indicative of meat extraction by fishermen. The vast majority of knocked shells found were adults, although a small number of juvenile shells (n=3) were observed.

25

Secondary Activities

During surface intervals between survey dives or when additional bottom time was available, a number of activities were conducted to further characterize the Navassa area or to provide data or samples for collaborators.

<u>Temperature loggers</u>

A network of five temperature loggers was installed around the island to ground-truth satellite sea surface temperatures and to help assess the potential for coral bleaching due to elevated temperatures. The loggers (Onset HOBO Water Temp Pro V2) were launched 4/23/06 to collect hourly temperature data beginning at 1800 EST. The loggers' battery life is sufficient to collect hourly temperature data for approximately 3 years. Two spare loggers (#1, serial # 967888; #2, serial # 967891) and the affiliated software will be delivered to Dr. Margaret Miller (NOAA Southeast Fisheries Science Center) to collect and re-deploy the loggers during her cruise in November 2006. The loggers were attached via cable ties to a 10" galvanized nail pounded into non-living substrate. In some cases the nail was marked with a small cylindrical blue float on a 1-foot long wire tether; in instances where the floats could be visually located by fishermen from the surface, the floats were not used. The loggers are located as follows:

Logger 3 (serial # 967887): West Pinnacles ($18^{\circ} 24.331$ ' N, $75^{\circ} 01.507$ ' W). At the base of the wall there is a large solitary pinnacle at a depth of ~83 ft, with a cluster of large rocks to the northwest (left facing the island). The logger is at the base of the solitary pinnacle and marked with a float.

Logger 4 (serial # 967885): Northwest Point (18° 24.825' N, 75° 01.786' W). The logger (Figure 11) is located in a narrow sand/rubble crevice between two large coral spurs at a depth of 36 ft, and is marked with a float.

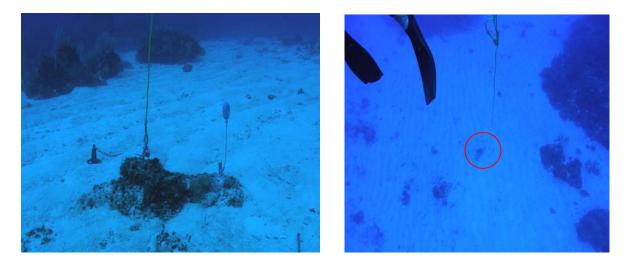

26

Figure 11. Diver installing the temperature logger at Northwest Point (left). Just seaward of the logger is a gorgonian growing out of a *Diploria* colony (right). (*Photos by Dave Hilmer*)

Logger 5 (serial # 967890): Conch north (18° 24.820' N, 75 °00.806' W). Logger was installed in a sandy area surrounded by larger patch reefs. Temperature logger was anchored in a small rock near the center of a large sandy space (Figure 12). The logger was marked with a blue subsurface float and was placed at a depth of approximately 91 ft.

Figure 12. Images of the installed temperature logger viewed from side (left) and from mid water column (right). The logger location in the right image is noted with a red circle. Loggers 6 (serial # 967886) and 7 (serial # 967889): Lulu Bay (18° 23.800' N, 75°

01.211' W). The coordinates mark the location of logger 6, which was installed at 84 ft on the south side of a small coral reef mound (~3 ft diameter) located on a sandy bottom between two

much larger coral reefs (Figure 13). Logger 7 is located shoreward and to the right of logger 6, in 50 ft of water against the wall at Lulu Bay just to the left of the usual fishing boat anchorage where the left side of a small cavern begins.

Figure 13. Diver installing logger 7 at the base of the wall (left). Location of logger 6 underneath a small reef patch (right), noted with a red circle. (*Photos by Jean Wiener*)

Specimen Collections

The USFWS Special Use permit conditions (Appendix 1) allowed for the collection of biological samples for laboratory assays. Fish were collected by divers with pole spears, or by hook and line fishing from a surface vessel; divers also collected corals and macroalgae by hand. The samples will be used for trophic analyses via stable isotopes (δ^{15} N and δ^{13} C); in addition, apex predators (e.g., barracuda) will be sampled for ciguatera. Appendix 8 provides a complete list of specimens collected.

Drop Camera Surveys

On a previous research cruise to Navassa, Art Gleason (University of Miami) created a bathymetry grid and habitat map from QTC VIEW[™] survey equipment and a 50 kHz singlebeam fathometer. As previously stated, this existing bathymetry data assisted with site selection for this research cruise. In addition, drop camera surveys were conducted on this cruise (Table 8) for use as additional ground-truthing points for habitat mapping. A survey launch navigated to the site using a Trimble GPS system. After determining the direction and speed of the current, the launch maneuvered upstream of the site and a SeaViewer® Sea-DropTM color video camera (650 series) mounted in a custom frame was lowered on an outrigger boom until the sea floor came into view. As the survey launch drifted over the site, video footage was recorded on a Sony DV Walkman and stamped with Trimble GPS coordinate data using a Horita GPT-50 video tilter.

Site	Latitude	Longitude	Habitat	Personnel
DEL5	18° 23.191' N	75° 00.869' W	colonized hard bottom	Uhrin, Hilmer, Wiener
DEL7	18° 23.201' N	75° 00.500' W	colonized hard bottom	Uhrin, Hilmer, Wiener
DEL8	18° 23.312' N	75° 00.376' W	sparse hard bottom	Uhrin, Hilmer, Wiener
DEL10	18° 23.362' N	75° 00.221' W	moderate hard bottom	Uhrin, Hilmer, Wiener
DEL14	18° 23.200' N	75° 00.454' W	colonized hard bottom	Uhrin, Hilmer, Wiener
DED7	18° 23.269' N	75° 59.538' W	pavement/sponges	Uhrin, Hilmer, Wiener
DED9	18° 23.070' N	75° 00.253' W	rubble/algae	Uhrin, Hilmer, Wiener
DED10	18° 23.381' N	75° 00.021' W	rubble/pavement	Uhrin, Hilmer, Wiener
DED14	18° 23.184' N	75° 00.013' W	rubble/algae	Uhrin, Hilmer, Wiener
DED16	18° 23.038' N	75° 00.191' W	rubble/algae	Uhrin, Hilmer, Wiener
NDB1	18° 25.148' N	75° 01.634' W	colonized hard bottom	Piniak, Whitfield
NDB2	18° 25.145' N	75° 01.553' W	rubble, patchy hard bottom	Piniak, Whitfield
NDB3	18° 25.150' N	75° 01.587' W	mostly rubble	Piniak, Whitfield
WD1	18° 24.689' N	75° 02.144' W	colonized hard bottom	Uhrin, Piniak, Poray
WD2	18° 24.584' N	75° 02.238' W	colonized hard bottom	Uhrin, Piniak, Poray
WD3	18° 24.797' N	75° 02.222' W	moderate hard bottom	Uhrin, Piniak, Poray
NDA2	18° 24.860' N	75° 00.390' W	sand and sparse algae	Piniak, Whitfield
NDA4	18° 24.836' N	75° 00.259' W	sand	Piniak, Whitfield
NDA5	18° 24.933' N	75° 00.519' W	sand	Piniak, Whitfield
WL1	18° 24.825' N	75° 02.066' W	rubble/sparse soft coral	Uhrin, Piniak, Poray
WL5	18° 24.982' N	75° 01.939' W	sparse hard bottom	Uhrin, Piniak, Poray
WL8	18° 24.916' N	75° 01.984' W	rubble and hard bottom	Uhrin, Piniak, Poray

Table 8 Drop camera survey sites. Hard bottom is defined as colonized by sponges, soft corals, and/or scleractinian corals.

Submerged Cultural Resources

NOAA chart 26194 provides bathymetry information for the area around Navassa and lists a shipwreck off the southeast side of the island, noted as PD (position doubtful). The

NOAA Office of Coast Survey Automated Wreck and Obstruction Information System (AWOIS) report indicates the British steamer *Ferngarth* was reported sunk in 26 fathoms of water on August 13, 1921. A 1981 echo sounder survey of the site did not locate the wreck, and deletion from the database was proposed.

The multibeam sonar survey on this cruise pinpointed the location of a large wreck. Coordinates are not provided here although the U.S. Fish and Wildlife Service may obtain them upon request. The wreck is approximately 300 ft long; the top of the wreck lies in approximately 140 ft of water and the surrounding seafloor is at approximately 160 ft. Video images of the site were obtained by drifting drop camera surveys from a launch on April 24, 2006 and from the *Nancy Foster* on April 26, 2006. The wreck appeared broken up, free of entanglements from fishing gear or other obstructions, and had a large fish community. As the last dive of the cruise (see Appendix 5), two divers from the scientific party with technical diving experience conducted a controlled above-bottom dive to 130 ft to video the wreck, supervised by safety divers from the *Nancy Foster*. The divers did not physically interact with the wreck in any way, and the identity of the wreck could not be confirmed.

Acknowledgments

This cruise was funded by internal support from the NOAA Center for Coastal Fisheries and Habitat Research, division of Applied Ecology and Restoration Research. In addition, the multibeam work was supported by funds from NCCOS headquarters and from Tom Hourigan and Margaret Miller at NMFS. The authors gratefully thank Joe Schwagerl and the U.S. Fish and Wildlife Service for their support and for permission to conduct research activities in Navassa. The officers and crew of the NOAA ship *Nancy Foster* deserve praise for making this

30

such a safe and enjoyable cruise. Thanks to the scientific party for their enthusiasm and hard work; in addition, Vanessa Nero made substantial contributions to the planning and successful execution of the cruise. Invaluable planning information and assistance was provided by Margaret Miller, Art Gleason, and Tim Battista. This manuscript was improved by comments from Mark Fonseca, Patricia Hay, Patti Marraro, Vanessa Nero, Jenny Vander Pluym, and Paula Whitfield.

Literature Cited

- Appeldoorn, R. S., M. Nemeth, J. Vasslides, and M. Schärer. 2000. The effect of fish traps on benthic habitats off La Parguera, Puerto Rico. Report to the Caribbean Fishery Management Council. Department of Marine Sciences, University of Puerto Rico, Mayagüez, PR. 33p.
- Fonseca, M. S., A. V. Uhrin, C. A. Currin, J. S. Burke, D. W. Field, C. M. Addison, L. L. Wood,
 G. A. Piniak, and T. S. Viehman. 2005. Biogeographic Analysis of Tortugas Ecological
 Reserve: Examining the Refuge Effect Following Reserve Designation. NOAA Technical
 Memorandum NOS NCCOS 22. 44 p.
- Garrison, V. H., C. S. Rogers, J. Beets, and A. M. Friedlander. 2004. The habitats exploited and the species trapped in a Caribbean island trap fishery. Environmental Biology of Fishes 71:247-260.
- Glazer, R. A., 1999. Manual for surveying queen conch, *Strombus gigas* aggregations. Report to the Florida Fish and Wildlife Conservation Commission. 14 p.

- Jean-Baptiste, N. 1999. Distribución especial de las nasas y sus relaciones con la topografia, las agragaciones de peces y capturas estacionales. M. S. Thesis, University of Puerto Rico, Mayagüez, P. R. 107 p.
- Jeffery, C. F. G. 2000. Annual coastal and seasonal variation in Grenadian demersal fisheries (1986-1993) and implications for management. Bulletin of Marine Science 66:305-319.
- Kohler, K. E. and S. M. Gill, in press. Coral Point Count with Excel extensions (CPCe): AVisual Basic program for the determination of coral and substrate coverage using random point count methodology. Computers and Geosciences.
- Koslow, J. A., F. Hanley, and R. Wicklund. 1988. Effects of fishing on reef fish communities at Pedro Bank and Port Royal Cays, Jamaica. Marine Ecology Progress Series 43:201-212.
- McClellan, D. B., and G. M. Miller. 2003. Reef fish abundance, biomass, species composition and habitat characterization of Navassa Island. In M. W. Miller (Ed.), Status of reef resources of Navassa Island: Cruise report Nov. 2002. NOAA Technical Memorandum NMFS-SEFSC-501, p. 24-42.
- Miller, M. W. (Ed.) 2003. Status of reef resources of Navassa Island: Cruise report Nov. 2002. NOAA Technical Memorandum NMFS-SEFSC-501. 119 p.
- Miller, M. W., D. B. McClellan, and C. Begin. 2003. Observations on fisheries activities at Navassa Island. Marine Fisheries Review 65:43-49.
- Munro, J. L., P. H. Reeson, and V. C. Gaut. 1971. Dynamic factors affecting the performance of the Antillean fish trap. Proceedings of the Gulf and Caribbean Fisheries Institute 23:184-194.
- Quandt, A. 1999. Assessment of fish trap damage on coral reefs around St. Thomas, USVI. Independent Project. University of the Virgin Islands, St. Thomas USVI. 11p.

- Rogers, C. S. and J. Beets. 2001. Degradation of marine ecosystems and decline of fishery resources in marine protected areas in the U. S. Virgin Islands. Environmental Conservation 28:312-322.
- Schärer, M. T., M. C. Prada, R. S. Appeldoorn, R. Hill, P. Sheridan, and M. Valdés-Pizzini.
 2004. The use of fish traps in Puerto Rico: current practice, long-term changes, and fishers' perceptions. Proceedings of the Gulf and Caribbean Fisheries Institute 54:744-756.
- Uhrin, A. V., M. S. Fonseca, and G. P. DiDomenico. 2005. Effect of Caribbean spiny lobster traps on seagrass beds of the Florida Keys National Marine Sanctuary: damage assessment and evaluation of recovery. In: P. W. Barnes and J. P. Thomas (Eds.), Benthic Habitats and the Effects of Fishing, p. 579-588. American Fisheries Society Symposium 41, Bethesda, Maryland.
- Valdés-Pizzini, M., J. M. Posada, K. Grove, and M. Rosado. 1997. Mapping fishing grounds using global positioning system (GPS) technology. Proceedings of the Gulf and Caribbean Fisheries Institute 49:125-138.
- Wiener, J. W. 2005. Oral history and contemporary assessment of Navassa Island fishermen.
 Report to the National Oceanic and Atmospheric Administration, National Marine
 Fisheries Service, Southeast Fisheries Science Center, Miami, Florida. 54p.
- Wiener, J. W. 2006. Daily log, NOAA-CCFHR research expedition to Navassa Island—April
 17 to May 1, 2006. Fondation pur la Protection de la Biodiversité Marine, Bethesda,
 Maryland. 9p.

				the state of the state data to be a state of the state of
FISH & WILDLIFE SERVICE	UNITED STATES DEPARTMENT OF THE FISH AND WILDLIFE SERVICE			e Credited Permit No. 41529 - 01
	NAVASSA NATIONAL WIL	DLIFE	Date Febr	uary 9, 2006
	REFUGE		Period of Use ((inclusive)
			From	April 19, 2006
	SPECIAL USE PERM	TIN	То	May 8, 2006
Permittee Name		Permittee Add	ress	
NOAA - Cent Habitat Rese	ter for coastal Fisheries and earch	NOAA 101 piver	s Island Roa	d
Princ	ciple Investigator Greg Piniak		NC 28516	-
Purpose (specify in	detail privilege requested, or units of products inv	volved)		
photography. St Installation of ten	NWR for research purposes including; scuba surv nip based surveys; sidescan/multibeam sonar/towo (10) temperature loggers in non-living reef frame ogical samples for stable isotope analysis.	ed video/Acoust	tic doppler currer	nt profilers/water samples.
Description (specif	fy unit numbers: metes and bounds, or other recog	gnizable designa	ations)	
Navassa Natioan	I Wildlife Refuge			
Amount of fee	if not a fixed payment, specify ra	ate and unit of c	harge:	
Payment Exer	npt - Justification: compatible with refuge ma	nagement obje	ctives	
Full Payment Partial Payment	nt - Balance of payments to be made as follo	ws:		
Record of Paymer	nts			
N/A				
Special Conditions	\$	4,14,00		
1. Permittee will 2. Permittee will 3. Permittee will 4. Permittee will reports resulting 5. Noaa Resean 6. Permittee is n 7. Access to isla	provide FWS with a complete list of expedition pa provide complete list of all biological specimens co provide FWS with a copy of the protocol foa all su provide FWS with a copy of a field trip report (intr	ellected, family, g urveys conducte o, methods, res mporary moorir observed visitin nitted from islan	genus, species a ed and the data o sults, and discuss ng stationn while g refuge while or d.	and their locations. collected from each. ion) and all published on site. n site.
	mit is issued by the U.S. Fish and Wildlife Service and a			-
	ns, and reservations, expressed or implied herein, and t	o the conditions a	and requirements a	appearing on the reverse side.
Permittee Signatur	for alk	1	Signature and T	ritie ragent DPL
Form 3-1383 (Rev. 5/9	h //	/ /	<u> </u>	0
	\mathcal{O}			

Appendix 1. Special access permit for cruise, issued by U.S. Fish and Wildlife Service.

Appendix 2. Sample data sheet for fish surveys.

_____ Date <u>4/22/06</u> Observer <u>A</u>_____ Site 205 Transect bearings 1st 342 2nd 313 3rd 229 Fin Kicks Q Depth (ft) 95 Visibility 30 + mPatchy Reef Pavement Sand Site Category: Continuous Reef High (3+m) Elevation: Low (<1m) Med. (1-3m) 1° SOUN (reaf) 70 % 50 % 1° Benthic Substrate TYMER % 2° conve (sand) 30 % cover 2° type 30 3° sand % % 20 Grunts: Seabass/Grouper: grasby HTT 1

Snappers:

Jacks:

Parrotfish: SL III redbard utri Prince SS ATT 11

Angels/Wrasse: rock beauty 11 sponish hay HOGFISH 1 Pelagics (tuna, mackerel, barracuda): cuda

Non-fish (turtle, shark, ray, conch, & lobster):

Comments:

Sponge heaven BARVIIEUL

Squirrelfish:

Colder HTT III

Triggerfish:

Soveassun Litt itt att Orean (2.4) black durgen litt 1 Surgeonfish: the for Itt ocean surgeon with

Other:

spokled sect 1 4 good 144

Appendix 3. Fish species of interest (species in bold were counted to limit of visibility – others enumerated within 4 m belt):

All sharks, turtles, & rays

Squirrelfishes – squirrelfish, longspine squirrelfish, blackbar squirrelfish, longjaw squirrelfish, cardinal soldierfish, reef squirrelfish, dusky squirrelfish

Sea basses –goliath grouper, Nassau grouper, comb grouper, yellowmouth grouper, tiger grouper, yellowfin grouper, marbled grouper

Other seabasses - soapfish, graysby, red hind, rock hind, coney

Bigeyes - glasseye snapper

Jacks – yellow jack, horse-eye jack, black jack, bar jack, rainbow runner, almaco jack, amber jack, blue runner

Snappers – schoolmaster, blackfin snapper, grey snapper, dog snapper, silk snapper, yellowtail snapper, cubera, mutton

Grunts - white & black margate, Caesar grunt, French grunt, Spanish grunt, bluestriped grunt, white grunt

Goatfishes - yellow goatfish, spotted goatfish

Angelfishes: queen angel, French, grey, rock beauty

Spadefishes – spadefish

Wrasses – Spanish hogfish, puddingwife, hogfish

Parrotfishes - Scarus, Sparisoma - primary parrots caught are queen & blue

Barracudas – great barracuda

Pelagic fishes – wahoo, skipjack tuna, blackfin tuna, false albacore, mackerel (cero, Spanish, king), dolphinfish

Lefteye flounders - peacock flounder, eyed flounder

Triggerfishes – queen triggerfish, ocean triggerfish, black durgon, Sargassum triggerfish

Surgeonfishes – blue tang, doctorfish, surgeonfish Boxfish – cow & trunk fish

Additional species to be censured: lobster (spiny & slipper), conch (noting juvenile & adult), moray

Appendix 4. Settings for benthic photo surveys.

All photos were taken using 7.1 megapixel Olympus C-7070 Wide Zoom cameras (settings: autofocus, scene = underwater wide, resolution = TIFF 3072x2304, ISO = auto, white balance = cloudy) with wide-angle lenses and Halcyon dual 24 watt High Intensity Discharge (HID) lights. The camera housings (Light and Motion Tetra or Olympus PT-027) were fitted with stainless steel marker sticks so that images were taken at a fixed distance from the bottom. The actual length of the stick varied with housing type as the mounting position differed, but was calibrated so that a perpendicular image on a flat sandy surface underwater was 80 cm wide x 60 cm long.

Date	Site	Divers	PSI	PSI	Time	Time	Depth	Bottom	Gas mix	Task
			in	out	in	out	(ft)	time		
4/20/06	n/a	Wiener	3000	500	1413	1453	74	33	air	checkout
		Score	2900	1200	1413	1453	74	33	32	
		Hamburger	3000	800	1413	1453	74	33	32	
	n/a	Poray	3000	1700	1420	1502	74	30	32	camera training
		Uhrin	3000	1250	1420	1502	74	30	32	
		Hilmer	3500	989	1420	1502	74	30	32	
	n/a	Whitfield	4000	2300	1432	1505	70	30	32	fish training
		Kelty	3100	1900	1432	1505	69	29	32	
		Foust	2800	750	1432	1505	72	30	32	
	n/a	Piniak	3100	1800	1540	1617	69	29	32	camera training
		Marr	3600	1500	1540	1617	77	30	32	
		Moneysmith	3800	1000	1540	1617	69	30	32	
	n/a	Degan	3000	1500	1556	1633	73	29	32	fish training
		Addison	2900	1500	1556	1633	68	29	32	
		Vander Pluym	3500	1800	1556	1633	73	29	32	
4/21/06	102	Whitfield	3200	700	0802	0846	99	27	32	site survey
		Uhrin	3200	1000	0802	0846	99	27	32	
		Hilmer	3200	1000	0802	0846	99	27	32	
	102	Addison	3100	1500	0817	0852	108	22	32	site survey
		Moneysmith	3100	1400	0817	0852	108	22	32	
		Vander Pluym	3100	700	0817	0852	108	22	32	
	102	Degan	2800	700	0905	0942	110	26	32	site survey
		Poray	3100	1200	0905	0942	110	26	32	
	108	Kelty	3100 2800	1500	1749	1823	105	23	32	site survey
		Marr		800	1749	1823	101	23	32	
		Moneysmith		1000	1749	1823	101	23	32	
	108 Whitfield		3000	1200	1801	1839	100	25	32	site survey
	Uhrin		3100	1350	1801	1839	100	25	32	
		Hilmer	2980	700	1801	1839	100	25	32	

Appendix 5. Dive statistics for scientists and *Nancy Foster* crew.

Date	Site	Divers	PSI	PSI	Time	Time	Depth	Bottom	Gas mix	Task
			in	out	in	out	(ft)	time		
	108	Degan			1856	1929	110	26	32	site survey
		Poray			1856	1929	110	26	32	
4/22/06	305	Addison	3000	1300	0843	0922	106	25	32	site survey
		Moneysmith	3100	700	0843	0922	106	25	32	
	305	Kelty	3100	1700	0929	0954	110	23	32	site survey
		Piniak	3100	700	0929	0954	107	23	32	
		Marr	3100	700	0929	0954	110	23	32	
	305	Whitfield	3100		0939	1011	110	26	32	site survey
		Uhrin	3100		0939	1011	110	26	32	
	18° 24.173' N	Addison			1421	1504	80		32	conch
	75° 01.432' W	Hilmer			1421	1504	80		32	
	205	Degan	3000	1100	1736	1812	96	23	32	site survey
		Poray	3200	1500	1736	1812	96	23	32	
	205	Kelty	3100	1700	1808	1848	105	26	32	site survey
		Marr	3100	1400	1808	1848	105	26	32	
		Piniak	3100	1000	1808	1848	105	26	32	
	205	Moneysmith	3000	1000	1818	1858	102	23	32	site survey
		Vander Pluym	3200	1400	1818	1858	105	23	32	-
		Foust	3000	1000	1818	1858	105	23	32	
4/23/06	203	Moneysmith	3000	600	0805	0853	97	30	32	site survey
		Vander Pluym	3000	600	0805	0853	104	30	32	-
		Addison	3000	1200	0805	0853	98	30	32	
	203	Whitfield	2900	700	0817	0900	98	26	32	site survey
		Uhrin	3000	1100	0817	0900	98	26	32	
		Hilmer	3000	600	0817	0900	98	26	32	
	203	Kelty	3100	1400	0903	0939	101	25	32	site survey
		Piniak	3000	800	0903	0939	101	25	32	
	Northwest Point	Hilmer	3000	2000	1441	1517	71	30	32	stable isotopes,
		Whitfield	3100	2000	1441	1517	66	30	32	temp logger
	West Pinnacles	Degan	3300	500	1547	1636	83	40	32	stable isotopes,
		Poray	3100	1000	1547	1636	83	40	32	temp logger

Date	Site	Divers	PSI	PSI	Time	Time	Depth	Bottom	Gas mix	Task
			in	out	in	out	(ft)	time		
	18° 24.820' N	Addison	3100	1800	1557	1633	91	23	32	conch, temp logger
	75° 00.805' W	Marr	3100	1400	1557	1633	91	23	32	
	Lulu Bay	Hamburger	2800	1250	1705	1735	84	25	32	temp loggers
		Wiener	3000	1000	1705	1735	84	25	air	
4/24/06	201	Whitfield	3100	1200	0801	0845	110	23	32	site survey
		Uhrin	3100	1000	0801	0845	110	23	32	
		Hilmer	3100	1000	0801	0845	110	23	32	
	201	Degan	3100	600	0815	0850	108	26	32	site survey
		Poray	3100	1000	0815	0850	108	26	32	
	201	Moneysmith	3000	500	0850	0936	104	30	32	site survey
		Vander Pluym	3000	550	0850	0936	104	30	32	
	18° 24.265' N	Uhrin	3000	1500	1400	1435	80	26	32	gear impact
	75° 00.517' W	Poray	3200	1500	1400	1435	80	26	32	
		Salerno	2800	800	1400	1435	80	26	32	
	18° 24.083' N	Addison	3000	1800	1407	1449	92	23	32	conch
	75° 00.114' W	Degan	3000	1400	1407	1449	92	23	32	
	202	Kelty	3000	1200	1737	1813	107	25	32	site survey
		Marr	3000	600	1737	1813	107	25	32	
	202	Whitfield	3000	1000	1805	1841	110	24	32	site survey
		Piniak	3100	1000	1805	1841	110	24	32	
	202	Foust	3100	1200	1818	1847	104	20	32	observation
		Wiener	2900	1000	1818	1847	104	20	air	
	202	Moneysmith	3000		1830	1908			32	site survey
		Vander Pluym	3000		1830	1908			32	
4/25/06	301	Moneysmith	3000		0813	0902	105	30	32	site survey
		Addison	3000		0813	0902	105	30	32	
		Vander Pluym	3000		0813	0902	105	30	32	
	301	Kelty	3000		0821	0858	106	27	32	site survey
		Piniak	3000		0821	0858	106	27	32	
		Hilmer	3100		0821	0858	106	27	32	

Date	Site	Divers	PSI	PSI	Time	Time	Depth	Bottom	Gas mix	Task
			in	out	in	out	(ft)	time		
	301	Marr	3000		0857	0935	105	23	32	site survey
		Whitfield	3000		0857	0935	105	23	32	-
	18° 24.753' N	Addison	3000		1403		99		32	conch
	75° 00.222' W	Kelty	2800		1403		99		32	
		Moneysmith	3000		1403		99		32	
	Lulu Bay	Wiener	3000		1424	1458	76	28	air	observation
		Salerno	2800		1424	1458	76	28	32	
	302	Degan	3000	1200	1750	1820	106	18	32	site survey
		Poray	3100	1500	1750	1820	106	18	32	-
	302	Marr	3100	500	1800	1833	105	25	32	site survey
		Vander Pluym	3100	900	1800	1833	105	25	32	-
	302	Uhrin	3000	1000	1810	1837	106	24	32	site survey
		Whitfield	3400	1100	1810	1837	106	24	32	-
		Hilmer	3100	900	1810	1837	106	24	32	
4/26/06	101	Degan			0800		110		32	site survey
		Poray			0800		110		32	-
	101	Whitfield			0815		107		32	site survey
		Uhrin			0815		107		32	-
		Hilmer			0815		107		32	
	101	Kelty			0850		110	27	32	site survey
		Piniak			0850		110	27	32	-
		Marr			0850		60		32	
	18° 24.897' N	Addison					102		32	conch
	75° 01.846' W	Vander Pluym					102		32	
	18° 24.836' N	Piniak					75	20	32	stable isotopes
	75° 01.451' W	Delinski							32	
		Salerno							32	
4/27/06	104	Degan	3100	500	0805	0843	103	25	32	site survey
		Poray	3100	1100	0805	0843	103	25	32	
		Hilmer	3100	1000	0805	0843	103	25	32	

Date	Site	Divers	PSI	PSI	Time	Time	Depth	Bottom	Gas mix	Task
			in	out	in	out	(ft)	time		
	104	Addison	3100	1000	0814	0901	104	30	32	site survey
		Moneysmith	3100	500	0814	0901	104	30	32	
		Vander Pluym	3100	500	0814	0901	104	30	32	
	104	Uhrin	3200		0850				32	site survey
		Kelty	3300		0850				32	
		Marr	3100		0850				32	
	Lulu Bay	Addison	3200	1500	1420		72	39	32	conch
	-	Vander Pluym	3200	1000	1420		73	41	32	
		Moneysmith	3400	1000	1420		73	41	32	
	115	Whitfield	3200	700	1805	1843	109	24	32	site survey
	115	Hilmer		1000	1805	1843	109	24	32	site survey
		Piniak		750	1805	1843	109	24	32	
	115	Degan	3200 3200	500	1810	1853	104	27	32	site survey
		Poray	3500	1200	1810	1853	102	27	32	
	115	Marr	3000	600	1823	1858	104	27	32	site survey
		Kelty	3300	1400	1823	1858	104	27	32	5
	115	Uhrin	3200	1750	1823	1855	100	25	32	observation
		Wiener	3000	500	1823	1855	100	25	air	
4/28/06	112	Degan	3400	1100	0804	0845	104	30	32	site survey
		Poray	3000	500	0804	0845	104	30	32	
		Vander Pluym	3100	900	0804	0845	104	30	32	
	112	Whitfield	3200	1100	0812	0849	96	30	32	site survey
		Uhrin	3100	1000	0812	0849	96	30	32	
		Hilmer	3200	900	0812	0849	96	30	32	
	112	Kelty	3000	1600	0840	0915	96	23	32	site survey
		Marr	3000	600	0840	0915	96	23	32	
		Moneysmith	3000	1400	0840	0915	96	23	32	
	210	Addison	3200	1800	1732	1810	105	27	32	site survey
		Piniak	3200	1100	1732	1810	105	27	32	
		Vander Pluym	3100	800	1732	1810	105	27	32	

Date	Site	Divers	PSI	PSI	Time	Time	Depth	Bottom	Gas mix	Task
			in	out	in	out	(ft)	time		
	210	Poray	3500	1200	1744	1822	105	27	32	site survey
		Degan	3000	700	1744	1822	105	27	32	
	210	Uhrin	3200	1000	1754	1831	99	26	32	site survey
		Whitfield	3400	1100	1754	1831	105	26	32	
	210	Foust	3000	600	1754	1831	105	26	32	observation
		Marr	3000	600	1754	1831	105	26	32	
4/29/06	109	Kelty	3200	1400	0753	0834	104	28	32	site survey
		Piniak	3200	1000	0753	0834	104	28	32	
	109	Degan	3200	700	0803	0942	104	30	32	site survey
		Poray	3200	1300	0803	0942	104	30	32	
	109	Wiener	3100	1100	0807	0939	90	20	air	observation
		Hilmer	3200	1600	0807	0939	98	20	32	
	109	Moneysmith	3300	800	0823	0905	105	30	32	site survey
		Vander Pluym	3100	900	0823	0905	105	30	32	
		Uhrin	3200	1250	0823	0905	105	30	32	
	Ferngarth	ngarth Whitfield Addison		800	0949	1037	130	20	32	observation
				1100	0949	1037	130	20	32	
	Ferngarth	erngarth Score		1200	1008	1037	118	14	32	safety divers
		Delinski	3300	1000	1008	1037	119	14	32	

DATE: 4/20 66 TRANSECT L (M): 30 SITE: East BEARING 3/3 R VIZ(M) DPTH(FT) 81 2/BZI HABITAT 3427 METERS 14 TOTAL CONCH: Trange. A:) J: OTL: O TOT:) AGE SIZE EGGS: M: F: F/E: MICROHAB NOTES Notes: Area Surveyed: 30mm SITE: East DATE: 4/2 TRANSECT L (M): 30 VIZ(M) BEARING 313 DPTH(FT) 81 HABITAT 213/10 3432 Trasz METERS 30 15 TOTAL CONCH: AGE A: O J: O TL: O TOT: Ø SIZE EGGS: M: F: F/E: MICROHAB NOTES Notes: Area Surveyed: John Can SITE: East DATE: 4 2 TRANSECT L (M): 30 VIZ(M) BEARING 10 DPTH(FT) 84 90 HABITAT 2432 24 METERS 22 0 TOTAL CONCH: AGE A: J: TL: TOT: SIZE EGGS: M: F: F/E: MICROHAB NOTES Notes: Area Surveyed: 30mx 2m (garmin coord) East 2: 18° 24 05,0 75° 0006-8-

Appendix 6. Conch survey datasheet, adapted from Glazer, 1999. Coordinates for sample locations may be found in Table 7.

Appendix 7. Conch habitat codes used to classify available and utilized habitat. Adapted from Glazer, 1999.

REEF		1
HARDBOTTOM		2
	Sponges/soft corals/red algae (colonized pavement)	21
	Soft bottom (<i>Halimeda/Penicillus</i>)	22
	Soft hard bottom (<i>Lobophora</i> /soft algae covered rock)	23
SEDIMENT		3
	Silt	31
	Sand	32
	Coarse sand	33
	Rubble	34
SEAGRASS		4
	Thalassia	41
	Syringodium	42
	Mixed	43
	Density	Thick1
		Thin2
Examples	Coarse sand plain with rubble	3334
	Reef with rubble	134
	Coarse sand w/rubble with soft corals/sponge	333421

Appendix 8. Specimen collection log. Coordinates for numbered sites may be found in Table 2; the coordinates for NW Point and West Pinnacles are the same as those for the temperature loggers (see text). Site E of NW Point is located at 18° 24.836' N, 75° 01.451' W. No size was recorded for algal collections.

Species	Туре	Size	Date	Location	Depth	Method	Collector
-	• •	(mm)	collected		(ft)		
Graysby	fish	210	4/23/06	West Pinnacles	83	spear	Degan
Graysby	fish	210	4/23/06	West Pinnacles	83	spear	Degan
Graysby	fish	220	4/27/06	104	104	spear	Addison
Blue tang	fish	105	4/27/06	104	104	spear	Addison
Blue tang	fish	85	4/27/06	104	103	spear	Degan
Ocean surgeon	fish	170	4/27/06	104	103	spear	Degan
Graysby	fish	200	4/27/06	Lulu Bay	n/a	spear	Degan
Blue tang	fish	180	4/27/06	Lulu Bay	n/a	spear	Degan
Silky snapper	fish	830	4/27/06	S of Lulu Bay	350	hook/line	Degan
Longspine squirrelfish	fish	310	4/27/06	S of Lulu Bay	350	hook/line	Degan
Graysby	fish	240	4/28/06	112	104	spear	Degan
Graysby	fish	230	4/28/06	112	104	spear	Degan
Blue tang	fish	125	4/28/06	112	104	spear	Degan
Longspine squirrelfish	fish	240	4/28/06	112	104	spear	Degan
Longspine squirrelfish	fish	225	4/28/06	210	105	spear	Degan
Longspine squirrelfish	fish	205	4/28/06	210	105	spear	Degan
Longspine squirrelfish	fish	235	4/28/06	210	105	spear	Degan
Longspine squirrelfish	fish	215	4/28/06	210	105	spear	Vander Pluym
Longspine squirrelfish	fish	225	4/28/06	210	105	spear	Degan
Redband parrotfish	fish	130	4/28/06	210	105	spear	Vander Pluym
Princess parrotfish	fish	180	4/28/06	210	105	spear	Vander Pluym
Black snapper	fish	330	4/28/06	S of Lulu Bay	350	hook/line	Degan
Redband parrotfish	fish	210	4/29/06	109	104	spear	Degan
Princess parrotfish	fish	175	4/29/06	109	105	spear	Vander Pluym

Species	Туре	Size	Date	Location	Depth	Method	Collector
		(mm)	collected		(ft)		
Redband parrotfish	fish	180	4/29/06	109	104	spear	Degan
Redband parrotfish	fish	160	4/29/06	109	104	spear	Degan
Redband parrotfish	fish	125	4/29/06	109	104	spear	Degan
Great barracuda	fish	750		south coast (trolling)	n/a	hook/line	Degan
Great barracuda	fish	840		south coast (trolling)	n/a	hook/line	Degan
Great barracuda	fish	1050		south coast (trolling)	n/a	hook/line	Degan
Montastraea cavernosa	coral	58 x 65	4/23/06	NW Point	36-66	hand	Whitfield/Hilmer
Montastraea annularis	coral	33 x 49	4/23/06	NW Point	36-66	hand	Whitfield/Hilmer
Porites astreoides	coral	65 x 88	4/23/06	NW Point	36-66	hand	Whitfield/Hilmer
Porites porites	coral	25 x 12	4/23/06	NW Point	36-66	hand	Whitfield/Hilmer
Porites porites	coral	16 x 48	4/23/06	NW Point	36-66	hand	Whitfield/Hilmer
Siderastrea siderea	coral	35 x 36	4/23/06	NW Point	36-66	hand	Whitfield/Hilmer
Siderastrea radians	coral	20 x 25	4/23/06	NW Point	36-66	hand	Whitfield/Hilmer
Stephanocoenia intersepts	coral	24 x 30	4/23/06	NW Point	36-66	hand	Whitfield/Hilmer
Montastraea annularis	coral	45 x 16	4/23/06	West Pinnacles	83	hand	Poray
Siderastrea siderea	coral	22 x 21	4/23/06	West Pinnacles	83	hand	Poray
Porites astreoides	coral	21 x 45	4/23/06	West Pinnacles	83	hand	Poray
Agaricia agaricites	coral	46 x 67	4/23/06	West Pinnacles	83	hand	Poray
Montastraea annularis	coral	60 x 81	4/23/06	West Pinnacles	83	hand	Poray
Montastraea franksi	coral	34 x 20	4/26/06	E of NW Point	55	hand	Piniak
Montastraea franksi	coral	16 x 17	4/26/06	E of NW Point	55	hand	Piniak
Porites astreoides	coral	38 x 25	4/26/06	E of NW Point	20	hand	Piniak
Porites astreoides	coral	17 x 10	4/26/06	E of NW Point	20	hand	Piniak
Siderastrea radians	coral	45 x 25	4/26/06	E of NW Point	20	hand	Piniak
Dictyota	algae		4/23/06	NW Point	36-66	hand	Whitfield/Hilmer
Halimeda	algae		4/23/06	NW Point	36-66	hand	Whitfield/Hilmer
Stypopodium	algae		4/23/06	NW Point	36-66	hand	Whitfield/Hilmer
Dictyota	algae		4/23/06	West Pinnacles	83	hand	Poray

Species	Туре	Size	Date	Location	Depth	Method	Collector
		(mm)	collected		(ft)		
Lobophora	algae		4/23/06	West Pinnacles	83	hand	Poray
Rhipocephalus	algae		4/25/06	Conch East2	99	hand	Poray
Sargassum	algae		4/25/06	Conch East2	99	hand	Poray
Stypopodium	algae		4/25/06	Conch East2	99	hand	Poray
Avrainvillea	algae		4/26/06	101	110	hand	Poray
Ventricaria	algae		4/26/06	101	110	hand	Poray
Halimeda	algae		4/26/06	E of NW Point	55	hand	Piniak
Lobophora	algae		4/26/06	E of NW Point	55	hand	Piniak
Dictyota	algae		4/26/06	E of NW Point	55	hand	Piniak
Rosinvingea	algae		4/26/06	E of NW Point	55	hand	Piniak
Padina	algae		4/26/06	E of NW Point	55	hand	Piniak
Ulva	algae		4/26/06	E of NW Point	55	hand	Piniak

United States Department of Commerce

Carlos M. Gutierrez Secretary

National Oceanic and Atmospheric Administration

Vice Admiral Conrad C. Lautenbacher, Jr. USN (Ret.) Under Secretary of Commerce for Oceans and Atmospheres

National Ocean Service

John H. Dunnigan Assistant Administrator for Ocean Service and Coastal Zone Management

